/******************************************************************************* * Copyright (c) 2000, 2004 IBM Corporation and others. * All rights reserved. This program and the accompanying materials * are made available under the terms of the Common Public License v1.0 * which accompanies this distribution, and is available at * http://www.eclipse.org/legal/cpl-v10.html * * Contributors: * IBM Corporation - initial API and implementation *******************************************************************************/ package org.eclipse.jdt.internal.compiler.ast; import org.eclipse.jdt.internal.compiler.codegen.*; import org.eclipse.jdt.internal.compiler.flow.*; import org.eclipse.jdt.internal.compiler.impl.Constant; import org.eclipse.jdt.internal.compiler.lookup.*; public abstract class Statement extends ASTNode { public abstract FlowInfo analyseCode(BlockScope currentScope, FlowContext flowContext, FlowInfo flowInfo); /** * INTERNAL USE ONLY. * This is used to redirect inter-statements jumps. */ public void branchChainTo(Label label) { // do nothing by default } // Report an error if necessary public boolean complainIfUnreachable(FlowInfo flowInfo, BlockScope scope, boolean didAlreadyComplain) { if ((flowInfo.reachMode() & FlowInfo.UNREACHABLE) != 0) { this.bits &= ~ASTNode.IsReachableMASK; boolean reported = flowInfo == FlowInfo.DEAD_END; if (!didAlreadyComplain && reported) { scope.problemReporter().unreachableCode(this); } return reported; // keep going for fake reachable } return false; } /** * Generate invocation arguments, considering varargs methods */ public void generateArguments(MethodBinding binding, Expression[] arguments, BlockScope currentScope, CodeStream codeStream) { if (binding.isVarargs()) { // 5 possibilities exist for a call to the vararg method foo(int i, int ... value) : // foo(1), foo(1, null), foo(1, 2), foo(1, 2, 3, 4) & foo(1, new int[] {1, 2}) TypeBinding[] params = binding.parameters; int paramLength = params.length; int varArgIndex = paramLength - 1; for (int i = 0; i < varArgIndex; i++) { arguments[i].generateCode(currentScope, codeStream, true); } ArrayBinding varArgsType = (ArrayBinding) params[varArgIndex]; // parameterType has to be an array type int argLength = arguments == null ? 0 : arguments.length; generateVarargsArgument: { if (argLength >= paramLength) { // right number of arguments - could be inexact - pass argument as is TypeBinding lastType = arguments[varArgIndex].resolvedType; if (lastType == NullBinding || varArgsType.dimensions() == lastType.dimensions()) { // foo(1, new int[]{2, 3}) or foo(1, null) --> last arg is passed as-is arguments[varArgIndex].generateCode(currentScope, codeStream, true); break generateVarargsArgument; } // right number but not directly compatible or too many arguments - wrap extra into array // called with (argLength - lastIndex) elements : foo(1, 2) or foo(1, 2, 3, 4) // need to gen elements into an array, then gen each remaining element into created array codeStream.generateInlinedValue(argLength - varArgIndex); codeStream.newArray(varArgsType); // create a mono-dimensional array int elementsTypeID = varArgsType.elementsType().id; for (int i = varArgIndex; i < argLength; i++) { codeStream.dup(); codeStream.generateInlinedValue(i - varArgIndex); arguments[i].generateCode(currentScope, codeStream, true); codeStream.arrayAtPut(elementsTypeID, false); } } else { // not enough arguments - pass extra empty array // scenario: foo(1) --> foo(1, new int[0]) // generate code for an empty array of parameterType codeStream.generateInlinedValue(0); codeStream.newArray(varArgsType); // create a mono-dimensional array } } } else if (arguments != null) { // standard generation for method arguments for (int i = 0, max = arguments.length; i < max; i++) arguments[i].generateCode(currentScope, codeStream, true); } } public abstract void generateCode(BlockScope currentScope, CodeStream codeStream); public boolean isEmptyBlock() { return false; } public boolean isValidJavaStatement() { //the use of this method should be avoid in most cases //and is here mostly for documentation purpose..... //while the parser is responsable for creating //welled formed expression statement, which results //in the fact that java-non-semantic-expression-used-as-statement //should not be parsable...thus not being built. //It sounds like the java grammar as help the compiler job in removing //-by construction- some statement that would have no effect.... //(for example all expression that may do side-effects are valid statement // -this is an appromative idea.....-) return true; } public StringBuffer print(int indent, StringBuffer output) { return printStatement(indent, output); } public abstract StringBuffer printStatement(int indent, StringBuffer output); public abstract void resolve(BlockScope scope); /** * Returns case constant associated to this statement (NotAConstant if none) */ public Constant resolveCase(BlockScope scope, TypeBinding testType, SwitchStatement switchStatement) { // statement within a switch that are not case are treated as normal statement.... resolve(scope); return NotAConstant; } }