/******************************************************************************* * Copyright (c) 2000, 2004 IBM Corporation and others. * All rights reserved. This program and the accompanying materials * are made available under the terms of the Common Public License v1.0 * which accompanies this distribution, and is available at * http://www.eclipse.org/legal/cpl-v10.html * * Contributors: * IBM Corporation - initial API and implementation *******************************************************************************/ package org.eclipse.jdt.internal.compiler; /** * A compilation result consists of all information returned by the compiler for * a single compiled compilation source unit. This includes: * * * The principle structure and binary may be null if the compiler could not produce them. * If neither could be produced, there is no corresponding entry for the type. * * The dependency info includes type references such as supertypes, field types, method * parameter and return types, local variable types, types of intermediate expressions, etc. * It also includes the namespaces (packages) in which names were looked up. * It does not include finer grained dependencies such as information about * specific fields and methods which were referenced, but does contain their * declaring types and any other types used to locate such fields or methods. */ import org.eclipse.jdt.core.compiler.*; import org.eclipse.jdt.internal.compiler.ast.AbstractMethodDeclaration; import org.eclipse.jdt.internal.compiler.env.*; import org.eclipse.jdt.internal.compiler.impl.ReferenceContext; import org.eclipse.jdt.internal.compiler.lookup.SourceTypeBinding; import java.util.*; public class CompilationResult { public IProblem problems[]; public IProblem tasks[]; public int problemCount; public int taskCount; public ICompilationUnit compilationUnit; private Map problemsMap; private Map firstErrorsMap; private int maxProblemPerUnit; public char[][][] qualifiedReferences; public char[][] simpleNameReferences; public int lineSeparatorPositions[]; public Hashtable compiledTypes = new Hashtable(11); public int unitIndex, totalUnitsKnown; public boolean hasBeenAccepted = false; public char[] fileName; public boolean hasInconsistentToplevelHierarchies = false; // record the fact some toplevel types have inconsistent hierarchies public CompilationResult( char[] fileName, int unitIndex, int totalUnitsKnown, int maxProblemPerUnit){ this.fileName = fileName; this.unitIndex = unitIndex; this.totalUnitsKnown = totalUnitsKnown; this.maxProblemPerUnit = maxProblemPerUnit; } public CompilationResult( ICompilationUnit compilationUnit, int unitIndex, int totalUnitsKnown, int maxProblemPerUnit){ this.fileName = compilationUnit.getFileName(); this.compilationUnit = compilationUnit; this.unitIndex = unitIndex; this.totalUnitsKnown = totalUnitsKnown; this.maxProblemPerUnit = maxProblemPerUnit; } private int computePriority(IProblem problem){ final int P_STATIC = 10000; final int P_OUTSIDE_METHOD = 40000; final int P_FIRST_ERROR = 20000; final int P_ERROR = 100000; int priority = 10000 - problem.getSourceLineNumber(); // early problems first if (priority < 0) priority = 0; if (problem.isError()){ priority += P_ERROR; } ReferenceContext context = problemsMap == null ? null : (ReferenceContext) problemsMap.get(problem); if (context != null){ if (context instanceof AbstractMethodDeclaration){ AbstractMethodDeclaration method = (AbstractMethodDeclaration) context; if (method.isStatic()) { priority += P_STATIC; } } else { priority += P_OUTSIDE_METHOD; } } else { priority += P_OUTSIDE_METHOD; } if (firstErrorsMap.containsKey(problem)){ priority += P_FIRST_ERROR; } return priority; } public IProblem[] getAllProblems() { IProblem[] onlyProblems = this.getProblems(); int onlyProblemCount = onlyProblems != null ? onlyProblems.length : 0; IProblem[] onlyTasks = this.getTasks(); int onlyTaskCount = onlyTasks != null ? onlyTasks.length : 0; if (onlyTaskCount == 0) { return onlyProblems; } if (onlyProblemCount == 0) { return onlyTasks; } int totalNumberOfProblem = onlyProblemCount + onlyTaskCount; IProblem[] allProblems = new IProblem[totalNumberOfProblem]; int allProblemIndex = 0; int taskIndex = 0; int problemIndex = 0; while (taskIndex + problemIndex < totalNumberOfProblem) { IProblem nextTask = null; IProblem nextProblem = null; if (taskIndex < onlyTaskCount) { nextTask = onlyTasks[taskIndex]; } if (problemIndex < onlyProblemCount) { nextProblem = onlyProblems[problemIndex]; } // select the next problem IProblem currentProblem = null; if (nextProblem != null) { if (nextTask != null) { if (nextProblem.getSourceStart() < nextTask.getSourceStart()) { currentProblem = nextProblem; problemIndex++; } else { currentProblem = nextTask; taskIndex++; } } else { currentProblem = nextProblem; problemIndex++; } } else { if (nextTask != null) { currentProblem = nextTask; taskIndex++; } } allProblems[allProblemIndex++] = currentProblem; } return allProblems; } public ClassFile[] getClassFiles() { Enumeration files = compiledTypes.elements(); ClassFile[] classFiles = new ClassFile[compiledTypes.size()]; int index = 0; while (files.hasMoreElements()){ classFiles[index++] = (ClassFile)files.nextElement(); } return classFiles; } /** * Answer the initial compilation unit corresponding to the present compilation result */ public ICompilationUnit getCompilationUnit(){ return compilationUnit; } /** * Answer the initial file name */ public char[] getFileName(){ return fileName; } /** * Answer the errors encountered during compilation. */ public IProblem[] getErrors() { IProblem[] reportedProblems = getProblems(); int errorCount = 0; for (int i = 0; i < this.problemCount; i++) { if (reportedProblems[i].isError()) errorCount++; } if (errorCount == this.problemCount) return reportedProblems; IProblem[] errors = new IProblem[errorCount]; int index = 0; for (int i = 0; i < this.problemCount; i++) { if (reportedProblems[i].isError()) errors[index++] = reportedProblems[i]; } return errors; } /** * Answer the problems (errors and warnings) encountered during compilation. * * This is not a compiler internal API - it has side-effects ! * It is intended to be used only once all problems have been detected, * and makes sure the problems slot as the exact size of the number of * problems. */ public IProblem[] getProblems() { // Re-adjust the size of the problems if necessary. if (problems != null) { if (this.problemCount != problems.length) { System.arraycopy(problems, 0, (problems = new IProblem[problemCount]), 0, problemCount); } if (this.maxProblemPerUnit > 0 && this.problemCount > this.maxProblemPerUnit){ quickPrioritize(problems, 0, problemCount - 1); this.problemCount = this.maxProblemPerUnit; System.arraycopy(problems, 0, (problems = new IProblem[problemCount]), 0, problemCount); } // Sort problems per source positions. quickSort(problems, 0, problems.length-1); } return problems; } /** * Answer the tasks (TO-DO, ...) encountered during compilation. * * This is not a compiler internal API - it has side-effects ! * It is intended to be used only once all problems have been detected, * and makes sure the problems slot as the exact size of the number of * problems. */ public IProblem[] getTasks() { // Re-adjust the size of the tasks if necessary. if (this.tasks != null) { if (this.taskCount != this.tasks.length) { System.arraycopy(this.tasks, 0, (this.tasks = new IProblem[this.taskCount]), 0, this.taskCount); } quickSort(tasks, 0, tasks.length-1); } return this.tasks; } public boolean hasErrors() { if (problems != null) for (int i = 0; i < problemCount; i++) { if (problems[i].isError()) return true; } return false; } public boolean hasProblems() { return problemCount != 0; } public boolean hasSyntaxError(){ if (problems != null) for (int i = 0; i < problemCount; i++) { IProblem problem = problems[i]; if ((problem.getID() & IProblem.Syntax) != 0 && problem.isError()) return true; } return false; } public boolean hasTasks() { return this.taskCount != 0; } public boolean hasWarnings() { if (problems != null) for (int i = 0; i < problemCount; i++) { if (problems[i].isWarning()) return true; } return false; } private static void quickSort(IProblem[] list, int left, int right) { if (left >= right) return; // sort the problems by their source start position... starting with 0 int original_left = left; int original_right = right; int mid = list[(left + right) / 2].getSourceStart(); do { while (list[left].getSourceStart() < mid) left++; while (mid < list[right].getSourceStart()) right--; if (left <= right) { IProblem tmp = list[left]; list[left] = list[right]; list[right] = tmp; left++; right--; } } while (left <= right); if (original_left < right) quickSort(list, original_left, right); if (left < original_right) quickSort(list, left, original_right); } private void quickPrioritize(IProblem[] list, int left, int right) { if (left >= right) return; // sort the problems by their priority... starting with the highest priority int original_left = left; int original_right = right; int mid = computePriority(list[(left + right) / 2]); do { while (computePriority(list[right]) < mid) right--; while (mid < computePriority(list[left])) left++; if (left <= right) { IProblem tmp = list[left]; list[left] = list[right]; list[right] = tmp; left++; right--; } } while (left <= right); if (original_left < right) quickPrioritize(list, original_left, right); if (left < original_right) quickPrioritize(list, left, original_right); } /** * For now, remember the compiled type using its compound name. */ public void record(char[] typeName, ClassFile classFile) { SourceTypeBinding sourceType = classFile.referenceBinding; if (!sourceType.isLocalType() && sourceType.isHierarchyInconsistent()) { this.hasInconsistentToplevelHierarchies = true; } compiledTypes.put(typeName, classFile); } public void record(IProblem newProblem, ReferenceContext referenceContext) { if (newProblem.getID() == IProblem.Task) { recordTask(newProblem); return; } if (problemCount == 0) { problems = new IProblem[5]; } else if (problemCount == problems.length) { System.arraycopy(problems, 0, (problems = new IProblem[problemCount * 2]), 0, problemCount); } problems[problemCount++] = newProblem; if (referenceContext != null){ if (problemsMap == null) problemsMap = new Hashtable(5); if (firstErrorsMap == null) firstErrorsMap = new Hashtable(5); if (newProblem.isError() && !referenceContext.hasErrors()) firstErrorsMap.put(newProblem, newProblem); problemsMap.put(newProblem, referenceContext); } } private void recordTask(IProblem newProblem) { if (this.taskCount == 0) { this.tasks = new IProblem[5]; } else if (this.taskCount == this.tasks.length) { System.arraycopy(this.tasks, 0, (this.tasks = new IProblem[this.taskCount * 2]), 0, this.taskCount); } this.tasks[this.taskCount++] = newProblem; } public CompilationResult tagAsAccepted(){ this.hasBeenAccepted = true; this.problemsMap = null; // flush return this; } public String toString(){ StringBuffer buffer = new StringBuffer(); if (this.fileName != null){ buffer.append("Filename : ").append(this.fileName).append('\n'); //$NON-NLS-1$ } if (this.compiledTypes != null){ buffer.append("COMPILED type(s) \n"); //$NON-NLS-1$ Enumeration typeNames = this.compiledTypes.keys(); while (typeNames.hasMoreElements()) { char[] typeName = (char[]) typeNames.nextElement(); buffer.append("\t - ").append(typeName).append('\n'); //$NON-NLS-1$ } } else { buffer.append("No COMPILED type\n"); //$NON-NLS-1$ } if (problems != null){ buffer.append(this.problemCount).append(" PROBLEM(s) detected \n"); //$NON-NLS-1$//$NON-NLS-2$ for (int i = 0; i < this.problemCount; i++){ buffer.append("\t - ").append(this.problems[i]).append('\n'); //$NON-NLS-1$ } } else { buffer.append("No PROBLEM\n"); //$NON-NLS-1$ } return buffer.toString(); } }